Source code for dival.util.odl_noise_random_state

# -*- coding: utf-8 -*-
# Copyright 2014-2018 The ODL contributors,
#           2019      Johannes Leuschner
#
# This file was taken from ODL and modified by Johannes Leuschner to add
# random state support instead of seeds.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

"""Functions to create noise samples of different distributions.

This module is a copy of :mod:`odl.phantom.noise` that was modified to support
random states instead of seeds.
"""

from __future__ import print_function, division, absolute_import
import numpy as np
import odl
from packaging import version
if version.parse(odl.__version__) < version.parse('0.8.0'):
    from odl.util import NumpyRandomSeed as npy_random_seed
else:
    from odl.util import npy_random_seed

__all__ = ('white_noise', 'poisson_noise', 'salt_pepper_noise',
           'uniform_noise')


[docs] def white_noise(space, mean=0, stddev=1, seed=None, random_state=None): """Standard gaussian noise in space, pointwise ``N(mean, stddev**2)``. Parameters ---------- space : `TensorSpace` or `ProductSpace` The space in which the noise is created. mean : ``space.field`` element or ``space`` `element-like`, optional The mean of the white noise. If a scalar, it is interpreted as ``mean * space.one()``. If ``space`` is complex, the real and imaginary parts are interpreted as the mean of their respective part of the noise. stddev : `float` or ``space`` `element-like`, optional The standard deviation of the white noise. If a scalar, it is interpreted as ``stddev * space.one()``. seed : int, optional Random seed to use for generating the noise. For `None`, use the current seed. Only takes effect if ``random_state is None``. random_state : `numpy.random.RandomState`, optional Random state to use for generating the noise. For `None`, use the global numpy random state (i.e. functions in ``np.random``). Returns ------- white_noise : ``space`` element See Also -------- poisson_noise salt_pepper_noise numpy.random.normal """ from odl.space import ProductSpace if random_state is None: random = np.random global_seed = seed else: random = random_state global_seed = None with npy_random_seed(global_seed): if isinstance(space, ProductSpace): values = [white_noise(subspace, mean, stddev) for subspace in space] else: if space.is_complex: real = random.normal( loc=mean.real, scale=stddev, size=space.shape) imag = random.normal( loc=mean.imag, scale=stddev, size=space.shape) values = real + 1j * imag else: values = random.normal( loc=mean, scale=stddev, size=space.shape) return space.element(values)
[docs] def uniform_noise(space, low=0, high=1, seed=None, random_state=None): """Uniformly distributed noise in ``space``, pointwise ``U(low, high)``. Parameters ---------- space : `TensorSpace` or `ProductSpace` The space in which the noise is created. low : ``space.field`` element or ``space`` `element-like`, optional The lower bound of the uniform noise. If a scalar, it is interpreted as ``low * space.one()``. If ``space`` is complex, the real and imaginary parts are interpreted as their respective part of the noise. high : ``space.field`` element or ``space`` `element-like`, optional The upper bound of the uniform noise. If a scalar, it is interpreted as ``high * space.one()``. If ``space`` is complex, the real and imaginary parts are interpreted as their respective part of the noise. seed : int, optional Random seed to use for generating the noise. For `None`, use the current seed. Only takes effect if ``random_state is None``. random_state : `numpy.random.RandomState`, optional Random state to use for generating the noise. For `None`, use the global numpy random state (i.e. functions in ``np.random``). Returns ------- white_noise : ``space`` element See Also -------- poisson_noise salt_pepper_noise white_noise numpy.random.normal """ from odl.space import ProductSpace if random_state is None: random = np.random global_seed = seed else: random = random_state global_seed = None with npy_random_seed(global_seed): if isinstance(space, ProductSpace): values = [uniform_noise(subspace, low, high) for subspace in space] else: if space.is_complex: real = random.uniform(low=low.real, high=high.real, size=space.shape) imag = random.uniform(low=low.imag, high=high.imag, size=space.shape) values = real + 1j * imag else: values = random.uniform(low=low, high=high, size=space.shape) return space.element(values)
[docs] def poisson_noise(intensity, seed=None, random_state=None): """Poisson distributed noise with given intensity. Parameters ---------- intensity : `TensorSpace` or `ProductSpace` element The intensity (usually called lambda) parameter of the noise. Returns ------- poisson_noise : ``intensity.space`` element Poisson distributed random variable. seed : int, optional Random seed to use for generating the noise. For `None`, use the current seed. Only takes effect if ``random_state is None``. random_state : `numpy.random.RandomState`, optional Random state to use for generating the noise. For `None`, use the global numpy random state (i.e. functions in ``np.random``). Notes ----- For a Poisson distributed random variable :math:`X` with intensity :math:`\\lambda`, the probability of it taking the value :math:`k \\in \mathbb{N}_0` is given by .. math:: \\frac{\\lambda^k e^{-\\lambda}}{k!} Note that the function only takes integer values. See Also -------- white_noise salt_pepper_noise uniform_noise numpy.random.poisson """ from odl.space import ProductSpace if random_state is None: random = np.random global_seed = seed else: random = random_state global_seed = None with npy_random_seed(global_seed): if isinstance(intensity.space, ProductSpace): values = [poisson_noise(subintensity) for subintensity in intensity] else: values = random.poisson(intensity.asarray()) return intensity.space.element(values)
[docs] def salt_pepper_noise(vector, fraction=0.05, salt_vs_pepper=0.5, low_val=None, high_val=None, seed=None, random_state=None): """Add salt and pepper noise to vector. Salt and pepper noise replaces random elements in ``vector`` with ``low_val`` or ``high_val``. Parameters ---------- vector : element of `TensorSpace` or `ProductSpace` The vector that noise should be added to. fraction : float, optional The propotion of the elements in ``vector`` that should be converted to noise. salt_vs_pepper : float, optional Relative abundance of salt (high) vs pepper (low) noise. A high value means more salt than pepper noise. low_val : float, optional The "pepper" color in the noise. Default: minimum value of ``vector``. For product spaces the minimum value per subspace is taken. high_val : float, optional The "salt" value in the noise. Default: maximuim value of ``vector``. For product spaces the maximum value per subspace is taken. seed : int, optional Random seed to use for generating the noise. For `None`, use the current seed. Only takes effect if ``random_state is None``. random_state : `numpy.random.RandomState`, optional Random state to use for generating the noise. For `None`, use the global numpy random state (i.e. functions in ``np.random``). Returns ------- salt_pepper_noise : ``vector.space`` element ``vector`` with salt and pepper noise. See Also -------- white_noise poisson_noise uniform_noise """ from odl.space import ProductSpace # Validate input parameters fraction, fraction_in = float(fraction), fraction if not (0 <= fraction <= 1): raise ValueError('`fraction` ({}) should be a float in the interval ' '[0, 1]'.format(fraction_in)) salt_vs_pepper, salt_vs_pepper_in = float(salt_vs_pepper), salt_vs_pepper if not (0 <= salt_vs_pepper <= 1): raise ValueError('`salt_vs_pepper` ({}) should be a float in the ' 'interval [0, 1]'.format(salt_vs_pepper_in)) if random_state is None: random = np.random global_seed = seed else: random = random_state global_seed = None with npy_random_seed(global_seed): if isinstance(vector.space, ProductSpace): values = [salt_pepper_noise(subintensity, fraction, salt_vs_pepper, low_val, high_val) for subintensity in vector] else: # Extract vector of values values = vector.asarray().flatten() # Determine fill-in values if not given if low_val is None: low_val = np.min(values) if high_val is None: high_val = np.max(values) # Create randomly selected points as a subset of image. a = np.arange(vector.size) random.shuffle(a) salt_indices = a[:int(fraction * vector.size * salt_vs_pepper)] pepper_indices = a[int(fraction * vector.size * salt_vs_pepper): int(fraction * vector.size)] values[salt_indices] = high_val values[pepper_indices] = -low_val values = values.reshape(vector.space.shape) return vector.space.element(values)
if __name__ == '__main__': # Show the phantoms import odl from odl.util.testutils import run_doctests r100 = odl.rn(100) white_noise(r100).show('white_noise') uniform_noise(r100).show('uniform_noise') white_noise(r100, mean=5).show('white_noise with mean') c100 = odl.cn(100) white_noise(c100).show('complex white_noise') uniform_noise(c100).show('complex uniform_noise') discr = odl.uniform_discr([-1, -1], [1, 1], [300, 300]) white_noise(discr).show('white_noise 2d') uniform_noise(discr).show('uniform_noise 2d') vector = odl.phantom.shepp_logan(discr, modified=True) poisson_noise(vector * 100).show('poisson_noise 2d') salt_pepper_noise(vector).show('salt_pepper_noise 2d') # Run also the doctests run_doctests()